Genome-wide mapping of polyadenylation sites in fission yeast reveals widespread alternative polyadenylation
نویسنده
چکیده
Regulatory elements in the 3' untranslated regions (UTRs) of eukaryotic mRNAs influence mRNA localization, translation, and stability. 3'-UTR length is determined by the location at which mRNAs are cleaved and polyadenylated. The use of alternative polyadenylation sites is common, and can be regulated in different situations. I present a new method to identify cleavage and polyadenylation sites (CSs) at the genome-wide level. The approach is strand-specific, avoids RNA enzymatic modification steps that can introduce sequence-specific biases, and uses unique molecular identifiers to ensure that all identified CS originates from individual RNA molecules. I applied this method to create the first comprehensive genome-wide map of polyadenylation sites of the fission yeast Schizosaccharomyces pombe, comprising the analysis of 2,021,000 individual mRNAs that defined 8,883 CSs. CSs were identified for 90% of coding genes and 50% of ncRNAs. Alternative polyadenylation was prevalent in both groups, with 41% and 45% of all detected genes, respectively, displaying more than one CS. The specificity of the cleavage reaction was gene-specific, resulting in highly variable levels of heterogeneity in 3'-UTR lengths. Finally, I show that for both coding and non-coding genes, the most common regulatory motif associated with CSs in fission yeast is the canonical human AAUAAA sequence.
منابع مشابه
Comprehensive Polyadenylation Site Maps in Yeast and Human Reveal Pervasive Alternative Polyadenylation
The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation sta...
متن کاملAn efficient method for genome-wide polyadenylation site mapping and RNA quantification
The use of alternative poly(A) sites is common and affects the post-transcriptional fate of mRNA, including its stability, subcellular localization and translation. Here, we present a method to identify poly(A) sites in a genome-wide and strand-specific manner. This method, termed 3'T-fill, initially fills in the poly(A) stretch with unlabeled dTTPs, allowing sequencing to start directly after ...
متن کاملA Network of Multiple Regulatory Layers Shapes Gene Expression in Fission Yeast
Gene expression is controlled at multiple layers, and cells may integrate different regulatory steps for coherent production of proper protein levels. We applied various microarray-based approaches to determine key gene-expression intermediates in exponentially growing fission yeast, providing genome-wide data for translational profiles, mRNA steady-state levels, polyadenylation profiles, start...
متن کاملGenome-Wide Mapping of Yeast RNA Polymerase II Termination
Yeast RNA polymerase II (Pol II) terminates transcription of coding transcripts through the polyadenylation (pA) pathway and non-coding transcripts through the non-polyadenylation (non-pA) pathway. We have used PAR-CLIP to map the position of Pol II genome-wide in living yeast cells after depletion of components of either the pA or non-pA termination complexes. We show here that Ysh1, responsib...
متن کاملComputational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat.
Alternative initiation, splicing, and polyadenylation are key mechanisms used by many organisms to generate diversity among mature mRNA transcripts originating from the same transcription unit. While previous computational analyses of alternative polyadenylation have focused on polyadenylation activities within or downstream of the normal 3'-terminal exons, we present the results of the first g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2013